Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.17.22269136

ABSTRACT

During the first semester of 2021, all of Brazil has suffered an intense wave of COVID-19 associated with the Gamma variant. In July, the first cases of Delta variant were detected in the state of Rio de Janeiro. In this work, we have employed phylodynamic methods to analyze more than 1,600 genomic sequences of Delta variant collected until September in Rio de Janeiro to reconstruct how this variant has surpassed Gamma and dispersed throughout the state. After the introduction of Delta, it has initially spread mostly in the homonymous city of Rio de Janeiro, the most populous of the state. In a second stage, dispersal occurred to mid- and long-range cities, which acted as new close-range hubs for spread. We observed that the substitution of Gamma by Delta was possibly caused by its higher viral load, a proxy for transmissibility. This variant turnover prompted a new surge in cases, but with lower lethality than was observed during the peak caused by Gamma. We reason that high vaccination rates in the state of Rio de Janeiro were possibly what prevented a higher number of deaths. Impact statementUnderstanding how SARS-CoV-2 spreads is vital to propose efficient containment strategies, especially when under the perspective of new variants emerging in the next year. Still, models of SARS-CoV-2 dispersal are still largely based in large cities from high-income countries, resulting in an incomplete view of the possible scenarios consequent of a new variant introduction. The work improves this discussion by reconstructing the spatio-temporal dispersal of Delta variant since its introduction in Rio de Janeiro, a densely populated region in South America. We also analyzed the epidemiological outcome of this spread, with a decrease in lethality rate uncommon to the observed in other countries. Data summaryFour supplementary figures, one supplementary table and one supplementary file are available with the online version of this article. Raw short reads of the newly sequenced genomes are available at SRA-NCBI database (https://www.ncbi.nlm.nih.gov/sra) under the BioProject PRJNA774631 and the assembled genomes are deposited at GISAID database (https://www.gisaid.org/) under the accession numbers listed in Table S1. Other genomic sequences used in the analyses are listed in Table S2. Epidemiological data for the state of Rio de Janeiro was obtained from https://www.saude.rj.gov.br/informacao-sus/dados-sus/2020/11/covid-19.


Subject(s)
COVID-19 , Death
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1159806.v1

ABSTRACT

Since the first reports of patients coinfected by two genetically-distinct lineages of SARS-CoV-2, the scientific community raised concerns about the recombination of intra-host viral RNA sequences as a possible mechanism underlying the emergence of novel variants. Indeed, this phenomenon occurs at a relatively high frequency among betacoronaviruses. Nevertheless, the few existing studies about recombination between genetically-distinct lineages of SARS-CoV-2 are restricted to detect the inter-host dissemination of genomes post-recombination events. However, the high genomic similarity between the current co-circulating lineages challenges the identification of these events. Here, we report the first case of intra-host SARS-CoV-2 recombination during a coinfection by the variants of concern (VOC) AY.33 (Delta) and P.1 (Gamma) supported by sequencing reads harboring a mosaic of lineage-defining mutations. By using next-generation sequencing reads intersecting regions that simultaneously overlap lineage-defining mutations from Gamma and Delta, we were able to identify a total of six recombinant regions across the SARS-CoV-2 genome within a sample. Four of them mapped in the spike gene and two in the nucleocapsid gene. We detected mosaic reads harboring a combination of lineage-defining mutations from each VOC. To our knowledge, this is the first report of intra-host RNA-RNA recombination between two lineages of SARS-CoV-2, which can represent a threat to public health management during the COVID-19 pandemic due to the possibility of the emergence of viruses with recombinant phenotypes.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.20.21260890

ABSTRACT

In the present study, we provide a retrospective genomic epidemiology analysis of the SARS-CoV-2 pandemic in the state of Rio de Janeiro, Brazil. We gathered publicly available data from GISAD and sequenced more 1,927 new genomes sampled periodically from March 2021 to June 2021 from 91 out of the 92 cities of the state. Our results showed that the pandemic was characterized by three different phases driven by a successive replacement of lineages. All stages occurred in distinct mortality and mobility contexts, with higher evidence of social distancing measures being observed in early pandemic and relaxed in the last two phases. Interestingly, we noticed that viral supercarriers accounted for the overwhelming majority of the circulating virus (> 90%) among symptomatic individuals in the state. Moreover, SARS-CoV-2 genomic surveillance also revealed the emergence and spread of two new variants (P.5 and P.1.2) firstly reported in this study. Altogether, our findings provided important lessons learned from the different epidemiological aspects of the SARS-CoV-2 dynamic in the state of Rio de Janeiro that have a strong potential to shape future decisions aiming to improve public health management and understanding mechanisms underlying virus dispersion.

4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.23.20248598

ABSTRACT

In this study, we report the sequencing of 180 new viral genomes obtained from different municipalities of the state of Rio de Janeiro from April to December 2020. We identified a novel lineage of SARS-CoV-2, originated from B.1.1.28, distinguished by five single-nucleotide variants (SNVs): C100U, C28253U, G28628U, G28975U, and C29754U. The SNV G23012A (E484K), in the receptor-binding domain of Spike protein, was widely spread across the samples. This mutation was previously associated with escape from neutralizing antibodies against SARS-CoV-2. This novel lineage emerged in late July being first detected by us in late October and still mainly restricted to the capital of the state. However, as observed for other strains it can be rapidly spread in the state. The significant increase in the frequency of this lineage raises concerns about public health management and continuous need for genomic surveillance during the second wave of infections.

SELECTION OF CITATIONS
SEARCH DETAIL